Центральный процессор

Пособие для начинающих: Центральный процессор и его характеристики

Центральный процессор является ключевым компонентом любого персонального компьютера. В этом материале мы расскажем об основных характеристиках современных процессоров, их технологических особенностях и базовых функциональных возможностях.

Введение

Любое компьютерное устройство, будь то ноутбук, настольный ПК или планшет состоит из нескольких важных компонентов, которые отвечают за его функциональные возможности и работоспособность в целом. Но, пожалуй, самым важным из них является центральный процессор (ЦП, ЦПУ или CPU) – устройство, отвечающее за все основные вычисления и выполняющее машинные инструкции (код программ). Недаром, именно процессор, считается мозгом компьютера и главной частью его аппаратного обеспечения.




Как правило, выбирая себе компьютер, мы в первую очередь обращаем внимание на то, какой именно процессор находится в его основе, так как от его производительности будут напрямую зависеть возможности и функциональность вашего будущего ПК. Именно поэтому, человек, который владеет информацией о современных производителях процессоров и тенденциях развития этого рынка, сможет грамотно определить не только возможности того или иного компьютерного устройства, но и оценить перспективность будущей покупки нового ПК или обновления старого.

Совершенно очевидно, что процессоры, установленные во всевозможных компьютерных и электронных устройствах, отличаются между собой не только своей производительностью, но и конструктивными особенностями, а так же принципами работы. В рамках этого цикла мы с вами будем знакомиться с процессорами, построенными на базе архитектуры x86, которые лежат в основе большинства современных настольных компьютеров, ноутбуков и нетбуков, а так же некоторых планшетов.

Наверняка, у многих читателей, особенно тех, кто только начинает знакомиться с компьютером, существует определенное предубеждение, что разбираться во всех этих «процессорных премудростях» удел опытных пользователей, потому что это очень сложно. Но так ли все проблематично на самом деле?

С одной стороны, конечно процессор – это очень сложное устройство и досконально изучить все его технические характеристики действительно непросто. Еще больше усугубляет ситуацию тот факт, что количество моделей ЦП, которые вы сможете сейчас найти на современном рынке очень велико, так как одновременно в продаже присутствуют сразу несколько поколений чипов. Но с другой стороны, процессоры имеют всего несколько ключевых характеристик, разобравшись в которых, рядовой пользователь сможет самостоятельно оценить возможности той или иной модели процессора и сделать правильный выбор, не запутавшись во всем модельном разнообразии.

Основные характеристики процессоров

Архитектура x86 впервые была реализована в собственных процессорах компанией Intel в конце 70-ых годов, а в ее основу были положены вычисления со сложным набором команд (CISC). Свое название эта архитектура получила от последних двух цифр, которыми заканчивались кодовые наименования моделей ранних изделий Intel — пользователи со стажем наверняка помнят еще 286-е (80286), 386-е (80386) и 486-е (80486) «персоналки», являвшиеся мечтой любого компьютерщика конца 80-ых, начала 90-ых годов.

На сегодняшний день архитектура x86 была также реализована и в процессорах компаний AMD, VIA, SiS, Cyrix и многих других.

Основными характеристиками процессоров, по которым их принято разделять на современном рынке, являются:

  • фирма производитель
  • серия
  • количество вычислительных ядер
  • тип  установочного разъема (сокет)
  • тактовая частота.

Производитель (бренд). На сегодняшний день все центральные процессоры для настольных компьютеров и ноутбуков разделены на два больших лагеря под марками Intel и AMD, которые вместе покрывают около 92% общего мирового рынка микропроцессоров. Несмотря на то, что из них доля Intelсоставляет примерно 80%, эти две компании уже много лет с переменным успехом конкурируют между собой, пытаясь завлечь покупателей под свои знамена.

Серия – является одной из ключевых характеристик центрального процессора. Как правило, оба производителя разделяют свою продукцию на несколько групп по их быстродействию, ориентации на разные категории пользователей и различные сегменты рынка. Каждая из таких групп составляет семейство или серию со своим отличительным названием, по которому можно понять не только ценовую нишу продукта, но и в общем, его функциональные возможности.




На сегодняшний день в основе продукции компании Intelлежат пять основных семейств –Pentium (Dual-Core)Celeron (Dual-Core)Core i3, Core i5и Core i7. Первые три нацелены на бюджетные домашние и офисные решения, два последних лежат в основе производительных систем.

Процессор Intel Core i7

Несколько особняком от основных семейств держится линейка чипов Atom, отличающаяся от остальных низким энергопотреблением и невысокой стоимостью. Эти процессоры предназначены для установки в бюджетных системах, где не требуется высокая производительность, но необходимо малое потребление энергии. К таковым относятся нетбуки, неттопы, планшетные ПК и коммуникаторы.

Нельзя не упомянуть и еще об одном семействе процессоров компании из Санта-Клара — Core 2. Не смотря на то, что оно уже не выпускается, и найти его в продаже можно лишь на различных «барахолках», до сих пор, у пользователей это семейство пользуется заслуженной популярностью, а многие нынешние домашние компьютеры оснащены процессорами именно этой серии.

Компания AMD, почитателям своей продукции, предлагает процессоры серий Athlon II,Phenom IIA-Series и FX-Series. Путь двух первых семейств подходит к логическому завершению, последние же два только набирают обороты. Кое-где еще можно встретить в продаже самые бюджетные процессоры Sempron, хотя их дни практически сочтены.

Процессор AMD FX-Series

Как и Intel, AMD имеет тоже свою «мобильную» серию под названием E-series, микропроцессоры которой характеризуются пониженным энергопотреблением и предназначены для установки в недорогие настольные и портативные ПК.

Количество вычислительных ядер. Еще в прошлом десятилетии разделение процессоров по количеству ядер не было вовсе, так как все они были одноядерными. Но времена меняются, и сегодня одноядерные ЦП можно назвать анахронизмом, а на смену им пришли многоядерные собратья. Самыми распространёнными из них являются двух и четырехъядерные чипы. Несколько меньше распространены процессоры с тремя, шестью и восемью вычислительными ядрами.

Наличие в процессоре сразу нескольких ядер призвано увеличить его производительность, и как вы понимаете, чем их больше, тем она выше. Правда при работе со старым, неоптимизированным под многоядерные вычисления, программным обеспечением это правило может и не работать.

Тип разъема. Любой процессор устанавливается в системную плату, на которой для этого существует специальный разъем (гнездо) или по-другому — сокет (Socket). Процессоры разных производителей, серий и поколений устанавливаются в разные типы разъемов. Сейчас, для настольных ПК, таковых семь – четыре для чипов Intel и три для AMD.

Основным и самым распространенным сокетом для центральных процессоров Intel считается LGA 1155. Самые производительные и продвинутые решения этой компании устанавливаются в разъем LGA 2011. Остальные два типа разъемов – LGA 775 и LGA 1156 доживают свои последние дни, так как выпуск процессоров под такие типы сокета практически прекращен.

Среди изделий AMD, на сегодняшний день самым используемым типом разъема можно назвать Socket AM3. Как правило, в него устанавливаются большинство бюджетных и самых ходовых продуктов компании. Правда эта ситуация в ближайшее время скорее всего измениться, так как все новейшие процессоры и производительные решения имеют разъемы Socket AM3+ и Socket FM1.

Кстати процессоры Intelи AMDможно очень просто отличить по одному характерному признаку, который вы возможно уже заметили. Изделия компании AMD имеют на задней части множество штырьков-контактов, с помощью которых они подключаются к системной плате (вставляются в разъем). Intel же использует принципиально иное решение, так как контактные ножки находятся не на самом процессоре, в внутри разъема материнской платы.

Рассматривать разъемы здесь для мобильных решений мы не будем, так как это не имеет никакого практического смысла. Ведь тип сокета для пользователя важен только в том случае, если вы планируете самостоятельно произвести замену (апгрейд) процессора в вашем компьютере. В портативных же устройствах это сделать довольно затруднительно, да и сами мобильные версии процессоров купить в рознице практически невозможно.

Тактовая частота – характеристика определяющая производительность процессора, измеряющаяся в мегагерцах (МГц) или гигагерцах (ГГц) и показывающая то количество операций, которое он может проделать в секунду.  Правда, проводить сравнение производительности разных моделей процессоров только по показателю их тактовой частоты в корне неверно.

Дело в том, что для выполнения одной операции, разным чипам может потребоваться разное количество тактов. Кроме того, современные системы при вычислениях используют конвейерную и параллельную обработки, и могут за один такт выполнить сразу несколько операций. Все это приводит к тому, что разные модели процессоров, имеющие одинаковую тактовую частоту, могут показывать совершенно различную производительность.

Сводная таблица семейств процессоров для настольных ПК

Технологический процесс (технология производства)

При производстве микросхем и в частности кристаллов микропроцессоров в промышленных условиях используется фотолитография – метод,  которым с помощью литографического оборудования на тонкую кремневую подложку наносятся проводники, изоляторы и полупроводники, которые и формируют ядро процессора. В свою очередь используемое литографическое оборудование имеет определенную разрешающую способность, которая и определяет название применяемого технологического процесса.

Кремниевая пластина с чипами процессоров Intel

Чем же так важен технологический процесс, с помощью которого изготавливаются процессоры? Постоянное совершенствование технологий позволяет пропорционально уменьшать размеры полупроводниковых структур, что способствует уменьшению размера процессорных ядер и их энергопотребления, а так же снижению их стоимости. В свою очередь снижение энергопотребления уменьшает тепловыделение процессора, что позволяет увеличивать их тактовую частоту, а значит и вычислительную мощность. Так же небольшое тепловыделение позволяет применять более производительные решения в мобильных компьютерах (ноутбуки, нетбуки, планшеты).

Кремниевая пластина с чипами процессоров AMD

Первый процессор Intel с архитектурой x86, до сих пор являющейся основной для всех современных ЦП, был произведен в конце 70-ых годов с помощью техпроцесса равному 3 мкм (микрометра). К началу 2000-ых годов практически все ведущие производители микросхем, включая компании AMD и Intel, освоили 0,13 мкм или 130 нм – технологический процесс. Большинство современных процессоров изготавливаются по 32 нм – техпроцессу, а с середины 2012 года и по 22 нанометровой технологии.

Переход на более тонкий техпроцесс всегда является значимым событием для производителей микропроцессоров. Ведь это, как было отмечено ранее, приводит к снижению стоимости производства чипов и улучшению их ключевых характеристик, а значит, делает выпускаемую продукцию разработчика более конкурентоспособной на рынке.

Энергопотребление и тепловыделение

На ранней стадии своего развития микропроцессоры потребляли совсем небольшое количество энергии. Но с ростом тактовых частот и количества транзисторов в ядре чипов, этот показатель стал стремительно расти. Практически не учитываемый на первых порах фактор энергопотребления на сегодняшний день имеет колоссальное влияние на эволюцию процессоров.

Чем выше энергопотребление процессора, тем больше он выделяет тепла, которое может привести к перегреву и выходу из строя, как самого процессора, так и окружающих его микросхем. Для отведения тепла используются специальные системы охлаждения, размер которых, напрямую зависит от количества выделяемого тепла процессором.

В начале 2000-ых годов тепловыделения некоторых процессоров выросло выше 150 Вт, а для их охлаждения приходилось использовать массивные и шумные вентиляторы. Более того, средняя мощность блоков питания того времени составляла 300 Вт, а это значит что более половины ее должно было уходить на обслуживание «прожорливого» процессора.

Именно тогда стало понятно, что дальнейшее наращивание вычислительной мощности процессоров невозможно без снижения их энергопотребления. Разработчики были вынуждены кардинально пересмотреть процессорные архитектуры и начать активно внедрять технологии, способствующие снизить тепловыделение.

Процессоры, работающие на сверхвысоких тактовых частотах, приходится остужать вот такими гигантскими системами охлаждения.

Для оценки тепловыделения процессоров была введена величина, характеризующая требования к производительности систем охлаждения и получившая название TDP. TDP показывает на отвод какого количества тепла должна быть рассчитана та или иная система охлаждения при использовании с определенной моделью процессора. Например, TDP процессоров для мобильных ПК должно быть менее 45 Вт, так как использование в ноутбуках или нетбуках больших и тяжелых систем охлаждения невозможно.

На сегодняшний день, в эру расцвета портативных устройств (ноутбуки, неттопы, планшеты), разработчикам удалось добиться колоссальных результатов на поприще снижения энергопотребления. Этому поспособствовали: переход на более тонкий технологический процесс при производстве кристаллов, внедрение новых материалов для снижения токов утечки, изменение компоновки процессоров, применение всевозможных датчиков и интеллектуальных систем, отслеживающих температуру и напряжения, а так же внедрение других технологий энергосбережения. Все эти меры позволяют разработчикам продолжать наращивать вычислительные мощности процессоров и использовать более производительные решения в компактных устройствах.

На практике, учитывать тепловые характеристики процессора при покупке стоит, если вы хотите собрать бесшумную компактную систему, или например, желаете что бы будущий ноутбук работал как можно дольше от аккумулятора.

Архитектура процессоров и кодовые имена

В основе каждого процессора лежит так называемая процессорная архитектура – набор качеств и свойств, присущий целому семейству микрочипов. Архитектура напрямую определяет внутреннюю конструкцию и организацию процессоров.

По сложившейся традиции, компании Intelи AMD дают своим различным процессорным архитектурам кодовые имена. Это более точно позволяет систематизировать современные процессорные решения. Например, процессоры одного семейства с одинаковой тактовой частотой и количеством ядер могут быть изготовлены с применением разного технологического процесса, а значит иметь разную архитектуру и производительность. Так же применение звучных имен в названиях архитектур дает возможность производителям более эффектно презентовать, нам пользователям, свои новые разработки.

Разработки Intel носят географические названия мест (гор, рек, городов и т.д.), находящихся недалеко от мест размещения ее производственных структур, ответственных за разработку соответствующей архитектуры. Например, первые процессоры Core 2 Duo были построены на архитектуре Conroe (Конрой), которая получила свое название в честь города, расположенного в американском штате Техас.

Компания AMD какой-либо четкой тенденции формирования имен для своих разработок не имеет. От поколения к поколению тематическая направленность может изменяться. Например, новые процессоры компании носят кодовые имена Liano и Trinity.

Многоуровневый кэш

В процессе выполнения вычислений, микропроцессору необходимо постоянно обращаться к памяти для чтения или записи данных. В современных компьютерах функцию основного хранения данных и взаимодействия с процессором выполняет оперативная память.

Не смотря на высокую скорость обмена данными между двумя этими компонентами, процессору часто приходиться простаивать, ожидая запрошенную у памяти информацию. В свою очередь это приводит к снижению скорости вычислений и общей производительности системы.




Для улучшения этой ситуации, все современные процессоры имеют кэш – небольшой промежуточный буфер памяти с очень быстрым доступом, использующейся для хранения наиболее часто запрашиваемых данных. Когда процессору становятся необходимы какие-то данные, он сначала ищет их копии в кэше, так как оттуда выборка необходимой информации произойдет гораздо быстрее, чем из оперативной памяти.

Большинство микропроцессоров для современных компьютеров имеют многоуровневый кэш, состоящий из двух или трех независимых буферов памяти, каждый из которых отвечает за ускорения определенных процессов. Например, кэш первого уровня (L1) может отвечать за ускорение загрузки машинных инструкций, второго (L2) – ускорение записи и чтения данных, а третьего (L3) – ускорение трансляции виртуальных адресов в физические.

Одной из самых основных проблем, стоящих перед разработчиками, является нахождение оптимальных размеров кэша. С одной стороны, большой кэш может содержать больше данных, а значит процент того, что процессор найдет среди них нужные — выше. С другой стороны, чем больше размер кэша, тем больше задержка при выборке данных из него.

Поэтому, кэши разных уровней имеют разный размер, при этом кэш первого уровня – самый маленький, но и самый быстрый, а третьего – самый большой, но и самый медленный. Поиск данных в них происходит по принципу от меньшего к большему. То есть процессор сначала пытается найти необходимую ему информацию в кэше L1, затем в L2 и потом в L3 (при его наличии). При отсутствии нужных данных во всех буферах происходит обращение к оперативной памяти.

В целом, эффективность работы кэша, особенно 3-его уровня, зависит от характера обращения программ к памяти и архитектуры процессора. Например, в некоторых приложениях наличие кэша L3 может принести 20%-ый прирост производительности, а в некоторых не сказаться вовсе. Поэтому, на практике вряд ли стоит руководствоваться характеристиками многоуровневого кэша, при выборе процессора для своего компьютера.

Встроенная графика

С развитием технологий производства и как следствие уменьшением размеров чипов, у производителей появилась возможность размещать внутри процессора дополнительные микросхемы. Первой из таковых, стало графическое ядро, отвечающее за вывод изображения на монитор.

Такое решение позволяет снизить общую стоимость компьютера, так как в этом случае нет необходимости использовать отельную видеокарту. Очевидно, что гибридные процессоры ориентированы на использование в бюджетных системах и корпоративном секторе, где производительность графической составляющей вторична.

Первый пример интеграции видеопроцессора в «нормальный» ЦП продемонстрировала компания Intel в начале 2010 года. Конечно, никакой революции это не принесло, так как до этого момента графика уже давно и успешно интегрировалась в чипсеты материнских плат.

Когда-то разница по функционалу между интегрированной и дискретной графикой была принципиальной. На сегодняшний же день можно говорить лишь о разной производительности этих решений, так как встроенные видеочипы способны выводить изображения на несколько мониторов в любых доступных разрешениях, выполнять 3D-ускорение и аппаратное кодирование видео. По сути, интегрированные решения по своей производительности и возможностям можно сравнить с младшими моделями видеокарт.

Компания Intel интегрирует в свои процессоры графическое ядро под незатейливым названием IntelHDGraphics собственной разработки. При этом процессоры Core 2, Celeron и старшие модели Core i7 встроенных графических ядер не имеют.

AMD, осуществив слияние в 2006 году с гигантом по производству видеокарт, канадской компанией ATI, встраивает в свои решения видеочипы семейства Radeon HD. Более того, некоторые новые процессоры компании представляют собой объединение процессорных ядер x86 и графических Radeonна одном кристалле. Единый элемент, созданный путем слияния центрального (CPU) и графического (GPU) процессоров получил название APU, Accelerated Processor Unit (ускоренный процессорный элемент). Именно так (APU) теперь и называют процессоры A и E-серий.

В общем, интегрированные графические решения от компании AMDявляются более производительными, чем Intel HD и выглядят предпочтительнее в игровых приложениях.

Режим Turbo

Многие современные процессоры оснащены технологией, позволяющей им в некоторых случаях автоматически увеличивать тактовую частоту выше номинальной, что приводит к увеличению производительности приложений. Фактически данная технология является «саморазгоном» процессора. Время работы системы в режиме Turbo зависит от условий эксплуатации, рабочей нагрузки и конструктивных особенностей платформы.

Компания Intel в своих процессорах использует собственную технологию интеллектуального разгона под названием Turbo Boost. Используется она в производительных семействах Core i5 и Core i7.

Отслеживая параметры, связанные с нагрузкой на ЦПУ (напряжение и сила тока, температура, мощность), встроенная система управления повышает тактовую частоту ядер в случае, когда максимальный тепловой пакет (TDP) процессора еще не достигнут. При наличии незагруженных ядер они отключаются и освобождают свой потенциал для тех, которые используются приложениями. Чем меньше ядер задействовано в вычислениях, тем выше поднимается тактовая частота чипов, участвующих в вычислениях. Для однопоточных приложений ускорение может составлять 667 МГц.

AMD так же имеет свою технологию динамического разгона наиболее нагруженных ядер и применяет ее только в своих 6 и 8-ядерных чипах, к котором относятся серии Phenom II X6 и FX.  Называется она Turbo Core и способна работать только в том случае, если в процессе вычислений количество загруженных ядер составляет меньше половины от их общего числа. То есть в случае 6-ядерных процессоров, число неактивных ядер должно быть не менее трех, а 8-ядерных – четырех. В отличие от Intel Turbo Boost, в этой технологии на прирост частоты не влияет количество свободных ядер и он всегда одинаков. Его величина зависит от модели процессора и колеблется от 300 до 600 МГц.

Заключение

В заключении давайте попробуем применить практически полученные знания с пользой. Например, в одном популярном магазине компьютерной электроники продаются два процессора Intel Core i5 cодинаковой тактовой частотой 2.8 ГГц. Давайте посмотрим на их описания, взятые с сайта магазина, и попробуем разобраться в их отличиях.

Если внимательно посмотреть на скриншоты, то несмотря на то, что оба процессора относятся к одному семейству общего у них не так уж много: тактовая частота, да количество ядер. Остальные характеристика рознятся, но первое на что стоит обратить внимание – это типы разъемов, в которые устанавливаются оба процессора.

Intel Core i5 760 имеет разъем Socket 1156, а значит относится к устаревшему поколению процессоров. Покупка его будет оправдана только в том случае, если у вас уже стоит в компьютере материнская плата с таким гнездом, и менять ее вы не хотите.

Более новый Core i5 2300 произведен уже по более тонкому техпроцессу (32 нм против 45 нм), а значит, имеет и более совершенную архитектуру. Несмотря на несколько меньший L3 кэш и «саморазгон» этот процессор наверняка не уступит в производительности своему предшественнику, а наличие встроенной графики позволит обойтись без приобретения отдельной видеокарты.

Несмотря на то, что у обоих процессоров тепловыделение указано одинаковым (95 Вт), Core i5 2300 в равных условиях будет холоднее своего предшественника, так как мы уже знаем, что более современный технологический процесс обеспечивает меньшее энергопотребление. В свою очередь это увеличивает его разгонный потенциал, что не может не радовать компьютерных энтузиастов.

А теперь давайте рассмотрим пример на базе процессоров AMD. Здесь мы выбрали специально процессоры из двух разных семейств – Athlon II X4 и Phenom II X4. По идее линейка Phenom является более производительной, чем Athlon, но давайте посмотрим на их характеристики и решим, все ли так однозначно.

Из характеристик видно, что оба процессора имеют одинаковые тактовую частоту и количество вычислительных ядер, практически идентичное тепловыделение, а так же у обоих отсутствует встроенное графическое ядро.

Первое различие, которое сразу бросается в глаза — процессоры устанавливаются в разные разъемы. Не смотря на то, что оба они (разъемы) на данный момент активно поддерживаются производителями системных плат, из этой пары Socket FM1 выглядит несколько предпочтительнее с точки зрения будущей модернизации, так как туда можно установить новые процессоры (APU) A-серии.

Еще одним плюсом Athlon II X4 651 является более тонкий и современный технологический процесс, по которому он был произведен. Phenom II отвечает наличием Turbo-режима и кэша третьего уровня.

В итоге, ситуация складывается неоднозначная и здесь ключевым фактором может стать розничная цена, которая у процессора из линейки Athlon II на 20-25% меньше, чем у Phenom II.  А с учетом более перспективной платформы (Socket FM1) покупка Athlon II X4 651 выглядит более привлекательной.

Конечно, что бы более однозначно говорить о преимуществах тех или иных моделей процессоров, необходимо знать на базе какой архитектуры они изготовлены, а так же их реальную производительность в различных приложениях, измеренную на практике. В следующем материале, мы рассмотрим подробно современные модельные ряды микропроцессоров Intel и AMD для настольных ПК, познакомимся с характеристиками различных семейств CPU, а так же приведем сравнительные результаты их производительности.
Статья от неизвестного

1 thought on “Центральный процессор

  1. Сергей

    Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *